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Abstract The lattice energy of the stoichiometric hydro-

xyapatite is calculated using three methods: the thermochem-

ical method called Born-Fajans-Haber cycle (BHFC), the

semi-empirical electrostatic method based on the general-

ized Kapustinskii equation, and the Glasser-Jenkins unit cell
volume method. The three values of the lattice energy of

the hydroxyapatite derived by the three methods are within

4% difference to each other (BHFC: 34,191 KJ/mole, gen-

eralized Kapustinskii equation: 32,808.9 KJ/mole, unit cell

volume: 32,997.4 KJ/mole). The Voigt and Reuss effective

elastic moduli of 19 simple ionic crystals, including those

of the hydroxyapaptite, are calculated and are found to be

linearly dependent on their volumetric lattice energy density

(LED).

1 Introduction

The hydroxyapatite is an ionic crystal often used to model

mineral in bone and dentine. In nature, the hydroxyapatite

always has impurities in it [1], such as the substitution of

the phosphate or hydroxyl groups by the carbonate group,

etc. The bone mineral is a vacancy-containing, hydroxyl-

deficient apatite. Its formula can be written as Ca8.3�1.7

(PO4)4.3(CO3)1(HPO4)0.7(OH)0.3�1.7 [2]. Here � represents

a vacancy as compared to stoichiometric hydroxyapatite,

Ca10(PO4)6(OH)2.

The mechanical properties of bone are largely determined

by the molecular-level alliance between bone collagen and
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bone mineral. The bone collagen is stiff under tension yet

compliant under compression, while the bone mineral is

stiff under compression yet fragile under tension. The re-

ciprocal property compensation between collagen and min-

eral enables bone to sustain both tensile and compressive

stresses.

The packing of chemical groups in an ionic crystal is

largely controlled by the electrostatic interaction as well as

the geometric constraints. One way to characterize the in-

tegrity of an ionic crystal lattice is through a physical quan-

tity called the lattice energy. The lattice energy of an ionic

crystal is defined as the amount of energy required to con-

vert 1 mole of the molecular unit into its constituent ions

with infinite distances between ions as in the gas phase [3].

The lattice energy of an ionic crystal per lattice unit is de-

pendent on the bond strength and bond density within the

lattice unit. A larger lattice energy in magnitude indicates

a more stable lattice structure, often represented by a more

densely packed lattice. The lattice energy density (LED), de-

fined as the lattice energy in a lattice unit divided by the

volume of the lattice unit, could be used as a molecular

indicator of the overall strength and stiffness of the ionic

crystal.

People’s fascination with the solid crystal can be dated

to 1819, when Dulong and Petit discovered that the heat ca-

pacities of solid elements heavier than potassium are about

25 J/(K mol) (3R) at room temperature and above [4, 5].

In 1907, Einstein proposed his quantum theory of the heat

capacity of ionic crystals, which is further refined by De-

bye in 1917 [4, 5]. In 1921, Latimer proposed a simple

way to calculate the entropy of solids and gases, draw-

ing a noted relation between the residual entropy and the

mass of the element, and under a postulate that the en-

tropy of a compound is the sum of the entropies of the ele-

ments in the compound given by the mass law [6]. Latimer’s
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method, commonly known as Latimer’s rules, is often used

as a first-line method to estimate the absolute entropy of

a solid crystal. This entropy value, coupled with a further

knowledge of the lattice enthalpy or lattice energy, can be

used to calculate the entropy and the Gibbs’ free energy

(hence the likelihood) of a chemicophysical process such as

dissolution [7].

Naturally occurring hydroxyapatite, Ca10(PO4)6(OH)2, is

a hexagonal crystal with a space group P63/m [8, 9]. The

lattice energy of this compound, though very important in

bone and teeth biology, has not been fully investigated. This

quantity cannot be directly determined by experiments since

in practice this compound will dissociate into neutral atoms

instead of into gaseous ions [10].

Generally, there are three different ways to calculate the

lattice energy of a complex compound such as hydroxyap-

atite. One is to use the Born-Fajans-Haber cycle (BHFC) [11,

12], the other is the semi-empirical electrostatic approach

based on a generalized Kapustinskii equation [13], and the

third one is the unit cell volume method recently developed

by Glasser and Jenkins [10].

Crystal lattice structure of naturally occurring hydroxya-

patite from Holly Springs, Georgia, USA, has been obtained

by several groups [8, 14–17]. A unit cell of pure hydroxya-

patite has a rhombic base with a = b = 9.4176 Å, a height

c = 6.8814 Å [14], and a volume of Vm = a2c sin(60◦) =
528.55 Å3.

Similar discussion on the lattice energies of a series of

apatites, in the context of chemical reaction and dissolution,

has been published in [7]. Our interests on hydroxyapatite,

on the other hand, are mainly focused on how to relate the

lattice energy densities of both stoichiometric and poorly—

crystallized hydroxyapatites to their mechanical properties

such as their stiffnesses. During the course of our study, we

obtained an updated data on the heat of formation of PO3−
4

from the Jenkins group [Jenkins, private communication].

Other than that, our work is independent from theirs, and our

results on the lattice energy of hydroxyapatie are comparable

to theirs.

2 Lattice energy calculation

2.1 Thermochemical method

Hess’s law states that if a reaction is carried out in a se-

ries of steps, the change of enthalpy for the reaction is equal

to the sum of the enthalpy changes for the individual steps.

The Born-Fajans-Haber cycle (BHFC) is a multi-stage cycle

of chemical and physical processes of substance conversion

[11, 12]. It relates the lattice energy precisely to other ther-

mochemical quantities. Considering the following reaction

as a part of a BHFC, shown in Fig 1,

Ca10(PO4)6(OH)2(cr)

−→ 10Ca2+(g) + 6PO3−
4 (g) + 2OH−(g). (1)

Based on Hess’s law, the above cycle provides the thermo-

chemical equation [18] to calculate the lattice enthalpy
(�HL) of the hydroxyapatite,

�HL = 10 �f H(Ca2+, g) + 6 �f H(PO3−
4 , g)

+ 2 �f H(OH−, g) − �fH(Ca10(PO4)6(OH)2, cr),

(2)

where � f H(∗) is the heat of formation of ∗ — the heat con-

sumed to form 1 mole of substance ∗ from its element in its

standard, thermodynamically most stable state (under 101.32

kPa and 298.15 K) [18]. The heat of formation of an individ-

ual ion is considered to be the energy required for the forma-

tion of the ion in gaseous state from its element in standard

state. The heat of formation of the hydroxyapatite is that for

its crystalline state. These data are [19, 20]: � f H(Ca2+
,g) =

1,925.9 KJ/mole, � f H(PO3−
4 ,g) = 291 KJ/mole, � f H(OH−,

g) = − 143.5 KJ/mole, � f H (Ca10(PO4)6OH2) = −13,477

KJ/mole at T = 298.15 ◦K.

Substituting the above data for the heat of formation into

Eq. (2), we get the lattice enthalpy for the hydroxyapatite,

� HL = 34,195 KJ/mole.

ΔfH (Ca10(PO4)6(OH)2 , cr) 10 ΔfH(Ca2+, g) +  
6 ΔfH(PO4

3-, g) + 
2 ΔfH(OH-, g) 

ΔHL 

10Ca (standard state) + 
6P (standard state) + 
26O (standard state) + 
2H (standard state)

10Ca2+(gas) + 6PO4
3- (gas) 

+ 2OH-(gas) 
Ca10(PO4)6(OH)2

(crystal) 

Fig. 1 Born-Fajans-Haber cycle

(BHFC) for the hydroxyapatite,

with the enthalpy change for

each step marked on the

process. �HL is the lattice

enthalpy of hydroxyapatite,

�fH(∗) represents the enthalpy

of formation of the entity in the

parenthesis (from elements in

standard states, and under

101.32 kPa and 298.15◦ K)
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Fig. 2 Crystallographic lattice structure of natural hydroxyapatite crys-

tal (http://www.geo.arizona.edu/AMS/amcsd.php)

� HL, the lattice enthalpy, can be converted to the lattice

energy by the following equation [18, 21, 22]:

UPOT = �HL−
[
10

(
nM

2
− 2

)
+6

(
nNP

2
−2

)
+ 2

(
nL P

2
−2

)]
RT. (3)

Derivation of this conversion can be found in Jenkins and

Glasser [22]. nM, nN P , and nLP are the numbers of degree

of freedom of ion particles. For monatomic ions such as

Ca2+, there are only 3 translational degrees of freedom,

hence nM = 3. For linear, polyatomic ions such as OH−,

nLP = 5 (3 translational, and 2 rotational). For nonlinear,

polyatomic ions such as PO3−
4 , nNP = 6 (3 translational, and

3 rotational). For one mole of a particle as an ideal gas,

the kinetic energy of one degree of freedom is 1/2 RT [5].

R is the universal gas constant, R = 8.3144 J/(mole · K),

T = 298.15 K. The purpose of the second term in Eq. (3)

is to take account of the phase-change-associated enthalpy

change (�H = �E + P� V ) in the reaction shown in Eq.

(1). Namely,

(a) internal energy change (�E) due to the non-zero kinetic

energies of the gas-phase ions and the ion vibrational

(acoustic) energy in a crystal lattice at T = 298.15 K

(standard state), and

(b) enthalpy change due to volume change (P�V ).

Certain idealization is used to derive Eq. (3), as discussed

in Jenkins and Glasser [22]. Putting all things together, Eq.

(3) gives the lattice energy of hydroxyapatite UPOT = 34,190

KJ/mole.

A recent estimate of the heat of formation of the gaseous

phosphate ion PO3−
4 , �f H (PO3−

4 ,g), has put its value at 321.8

KJ/mole [7]. If this value is used, the lattice enthalpy � HL

will become 34,379.8 KJ/mole. And the lattice energy UPOT

will become 34,374.8 KJ/mole instead of 34,190 KJ/mole (a

0.5% increase).

2.2 Kapustinskii equation

The lattice energy is dominated by the electrostatic potential

energy (attraction energy and repulsion energy), with a mi-

nor contribution from the van der Waals interaction (London

forces) [5]. Therefore, the lattice energy can also be cal-

culated from the knowledge of its crystal lattice structure,

using the concept of the Madelung constant [3]. However,

since calculating the Madelung constant of a complex lat-

tice such as that of the hydroxyapatite is very cumbersome, a

semi-empirical method is generally used. Kapustinskii [23]

introduced the concept that for any binary ionic crystal, re-

gardless of its crystal structure, it possesses an equivalent

structure of the rock-salt (NaCl) type that has the same lat-

tice energy. Lattice energy of this NaCl-equivalent structure

can be calculated using the Madelung constant for NaCl and

a set of equivalent ionic radii [12].

Kapustinskii’s concept is extended [13] to include multi-

ple, mixed ion systems with more than two types of ions in

the crystals. Using this generalized formulation, the lattice

energy is found to be,

UPOT(kJ/mole) = 121.4

<r>

(
1 − 0.0345

<r>

) ∑
nkz2

k, (4)

where nk = number of an individual ion in a formula unit, zk

= valence of the ion, and <r> = weighted mean ion radius
sum (in nm). Here Ro = 1 − 0.0345/ <r> is the repulsion

factor, and I = (
∑

nkz2
k)/2 is often called the ionic strength.

Eq (4) provides excellent estimates of the lattice energies in

conjunction with the Goldschmidt ionic radii of the cations

and the thermo-chemical radii of complex anions, such as

the phosphate ion.

The calculation of <r>, the mean radius sum, involves all

possible cation-anion pairs. For Ca10(PO4)6OH2, there are

sixty Ca−PO4 pairs and twenty Ca–OH pairs. Hence,� Goldschmidt ionic radius [12] of the Ca2+, rCa = 0.106

nm, and� the thermo-chemical radii [19] of PO3−
4 , rPO4 = 0.23 nm

and OH−, rOH = 0.152 nm,� Number of Ca–PO4 pairs = 60,� Number of Ca–OH pairs = 20,� Total number of cation-anion pairs = 60 + 20 = 80,

<r> =
60(rCa2+ + rPO3−

4
) + 20(rCa2+ + rOH− )

80

= 0.3165 nm. (5)

Equation (4) gives the lattice energy of hydroxyapatite

UPOT = 32,808.9 KJ/mole.
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2.3 Unit cell volume method

Equation (4) can be further simplified. For complex

ionic crystals with lattice energies larger than 5,000

KJ/mole, Glasser and Jenkins [10] found that <r>
/(Vm/2I )1/3 is fairly a constant 1.7, and the repulsion factor

Ro = 1 − ρ/<r> also approaches a constant 0.84. Here Vm is

the volume of the unit cell of the lattice. I is the ionic strength

I = (�nkz2
k)/2. Therefore, Eq. (4) can be rewritten as

UPOT(KJ/mol) = AI

(
2I

Vm

) 1
3

,

A = 121.39 KJ • nm/mole. (6)

The ionic strength I of the hydroxyapatite Ca10(PO4)6(OH)2

is I = 48, the unit cell volume Vm is 528.55 Å3. Substituting

these into Eq. (6), we get the third estimate of the lattice

energy UPOT = 32,997.4 KJ/mole.

3 Effective Reuss and Voigt stiffnesses

A single crystal is usually mechanically anisotropic due to

the preferred orientation of the lattice. Using the notations

adopted in Cowin [24], in order to fully describe the stiffness

of a single crystal, a full fourth-rank tensor in three dimen-

sions Ci jkm is needed (with 81 components). The stress tensor

Ti j is related to the strain tensor Ekm through Ti j = Ci jkm Ekm .

Due to the symmetry of the stress tensor (Ti j ) and the strain

tensor (Ekm) and thermodynamic restraints, the number of

independent components reduces to 21. Moreover, it is con-

venient to write the stress and the strain tensors, each with 6

independent components, as 6-component pseudo-vectors σα

and εβ . This way the stress-strain relation Ti j = Ci jkmEkm can

be simplified as σα = cαβ εβ , or alternatively, εα = kαβ σβ .

cαβ and kαβ are 6 × 6 matrices, and kαβ . cβγ = δαγ , where

δαγ = 0 if α �= γ and δαγ = 1 if α = γ .

A polycrystalline material is composed of randomly ori-

ented single crystal grains. Therefore, a polycrystalline ma-

terial is mechanically isotropic and its stiffness is related to

the stiffness matrix of the corresponding single crystal. As

shown in Cowin [24], it can be rigorously proven that the

elastic moduli of a polycrystalline solid are bounded by two

well-defined bounds: the upper Voigt bound and the lower

Reuss bound. These bounds are also called the Voigt effec-
tive isotropic moduli and the Reuss effective isotropic mod-
uli. The Voigt moduli are derived by assuming that the strain

field within all the grains is homogeneous, whereas the Reuss

moduli are derived by assuming that the stress field in all the

grains is homogeneous. The Voigt and Reuss effective mod-

uli can be used as convenient single-value indicators of the

overall stiffness of a single crystal, instead of using a full

6 × 6 stiffness matrix cαβ .

If the constants cαβ, kαβ, α, β = 1, 6, are known for

a single crystal, its Voigt/Reuss bulk and shear moduli

KV , GV , K R , and G R are [24]

KV = 1

9
trC, GV = 1

30
(3 tr V − tr C), K R = 1

trK
,

and G R = 15

2(3tr R − trK)
, (7)

where

tr C = c11 + c22 + c33 + 2(c12 + c13 + c23),

tr V = c11 + c22 + c33 + 2(c44 + c55 + c66),

tr K = k11 + k22 + k33 + 2(k12 + k13 + k23), and

tr R = k11 + k22 + k33 + 1

2
(k44 + k55 + k66). (8)

The corresponding Voigt and Reuss Young’s moduli, EV ,

and ER , can be obtained from the relation

EV,R = 9 GV,R KV,R

3 KV,R + GV,R
. (9)

The forms of the 6 × 6 stiffness matrix cαβ for hexagonal, cu-

bic, and rhombic single crystals can be found in the Appendix

of Cowin [24]. Data on cαβ for 19 ionic single crystal and

water ice, belonging to 3 different symmetry groups (cubic,

hexagonal, rhombic), can be found in Lide [19]. The data on

kαβ can be calculated as a simple inverse of cαβ . The cal-

culated Voigt and Reuss moduli are listed in Table 1 (in the

sequence of increasing lattice energy density, see below).

4 Lattice energy density

The lattice energy (KJ/mole) is defined as the energy cost to

convert one mole of the chemical unit from crystal form into

free ions. If we would like to know how much lattice energy

is stored in a unit volume, we should use a quantity called the

lattice energy density (LED) (KJ/cm3). The volumetric lattice
energy density LED (KJ/cm3) of a crystal can be calculated

by dividing the lattice energy (KJ/mole) by the molar volume

(cm3/mole) of the formula unit of the crystal. We predict that

the volumetric lattice energy density (LED) is correlated with

the effective stiffness of a crystal, since both quantities define

how strongly atoms bind to each other in a unit volume of

a crystal. In this context, the lattice energy density equals to

the “cohesive energy density” of the crystal as it dissociates

into compound ions.
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Table 1 Calculated Voigt and Reuss effective stiffnesses as they depend on the lattice energy density (LED). The Voigt and Reuss bulk

moduli for cubic crystals are in bold to show their identity with each other. The data for hydroxyapatite are also in bold

Lattice Voigt Voigt Voigt Reuss Reuss Reuss

Lattice Molar energy effective effective effective effective effective effective

Chemical energy volume density EV Gv Kv ER GR KR

unit Symmetry (KJ/mol) (cm3/mol) (KJ/cm3) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

H2O (Ice) Hexagonal 57.88 19.56 2.96 9.35 3.52 9.06 9.13 3.43 9.05

CsI Cubic 600 57.41 10.45 18.44 7.34 12.56 17.99 7.13 12.56
KI Cubic 632 53.07 11.91 16.96 6.70 12.03 13.16 4.99 12.03
CsBr Cubic 632 47.76 13.23 22.67 9.01 15.59 21.92 8.66 15.59
KBr Cubic 671 43.43 15.45 22.22 8.82 15.43 17.89 6.85 15.43
Cs2SO4 Rhombic 1596 84.33 18.93 32.58 12.59 26.34 32.37 12.51 26.14

LiI Cubic 730 32.95 22.16 27.62 11 18.83 25.57 10.04 18.83
Rb2SO4 Rhombic 1636 73.22 22.34 39.03 15.24 29.63 38.92 15.19 29.61

Ba(NO3)2 Cubic 2062 80.25 25.69 24.84 9.38 23.52 19.46 7.14 23.52
K2SO4 Rhombic 1700 65.36 26.01 44.32 17.47 31.89 43.85 17.25 31.88

NaCl Cubic 769 27.02 28.46 37.6 15.04 25.08 36.69 14.6 25.08
LiBr Cubic 788 25.01 31.50 38.87 15.58 25.67 36.04 14.24 25.67
KF Cubic 808 23.43 34.49 43.99 17.33 31.77 39.85 15.43 31.77
LiCl Cubic 834 20.50 40.68 50.03 20.20 31.82 46.09 18.31 31.82
BaSO4 Rhombic 2469 53.05 46.54 65.29 25.25 52.55 56.45 21.38 52.36

CaSO4 Rhombic 2489 45.98 54.13 88.17 35.43 57.44 60.42 23.11 52.19

BaF2 Cubic 2341 35.8 65.39 66.75 25.49 58.38 66.75 25.49 58.38
CaCO3 Rhombic 2804 34.16 82.08 95.07 40.41 48.97 86.38 36.65 44.76

Ca10(PO4)6(OH)2 Hexagonal 32809 318.3 103 152.96 63.81 84.58 140.45 57.52 83.86
CaF2 Cubic 2609 24.56 106.23 172.49 74.48 84.05 168.94 72.5 84.05

In order to test this hypothesis, the effective Voigt and

Reuss moduli (bulk, shear, and Young’s) are plotted against

the lattice energy density for the ionic crystals (plus ice) men-

tioned above. These 19 crystals are all the simple, ionic crys-

tals we can find with both their lattice energy and anisotropic

elastic constants available, and with lattice energy densities

close or below that of hydroxyapatite. The data on the lattice

energies of these crystals are obtained from Jenkins et al.

[21], Lide [19], and Dong et al. [25] (for H2O ice).

As shown in Figs. 3 to 5, all the Voigt and the Reuss

effective stiffnesses, as expected, follow an almost perfect

linear dependence on the lattice energy density. The regressed

relations are:

EV = 1.41 LED, R2 = 0.98;

ER = 1.30 LED, R2 = 0.97;

GV = 0.59 LED, R2 = 0.97;

G R = 0.53 LED, R2 = 0.96; (10)

KV = 0.84 LED, R2 = 0.96;

K R = 0.83 LED, R2 = 0.96;

For each crystal, its effective Voigt modulus is always larger

than the corresponding Reuss modulus. But the difference is

usually not large. For cubic crystals, it can be proven that the

Voigt bulk modulus equals to the Reuss bulk modulus [24],

a fact represented in the data shown in Table 1.

The above relations in Eq. (10) hold true for a wide range

of the lattice energy density (LED) (from 3 to 106 KJ/cm3),

and across different symmetry groups (hexagonal, rhombic,

and cubic). Effective moduli of the hydroxyapatite fall nicely

along the above regressed lines. This, in a way, validates the

reasonableness of our calculation of its lattice energy in this

paper. The anisotropic elastic constants of the hydroxyapatite

are listed in Lide [19], which is cited in Hearmon [26].

5 Discussion

5.1 Components of a lattice energy

For ionic crystals, the lattice energy of a crystal consists

of 3 terms: the Madelung attractive term (this term is posi-

tive due to the electrostatic attraction of opposite charges),

the electron repulsive term (this term is negative due to the

close apposition of electronic orbitals), and the van der Waals

term (this term is also positive due to the attractive London

forces between charged ions) [5]. The Madelung attractive

term is the predominant positive (attractive) term, and the

repulsive term is the minor negative (repulsive) term (around

10% of the attractive term [27]). The van der Waals term

is also positive (attractive), and its magnitude is usually
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smaller than, but often times approaching, the repulsive

term.

The most precise method to calculate the lattice energy is

to use quantum mechanics (the ab initio method). It can eval-

uate the exact contribution of each of the above three terms.

However, this method becomes intractably complicated (and

expensive) for large, complicated lattices. The lattice energy

of another P63/m crystal, the pyromorphite Pb5(PO4)3Cl, has

recently been calculated by ab initio methods to be 13,163.82

kJ/mole (or 26,327.64 for Pb10(PO4)6Cl2) [29]. The authors
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are not aware of any published results on the ab initio calcu-

lation of the lattice energy of the hydroxyapatite.

5.2 Correlation between lattice energy density and

mechanical stiffnesses

Lattice energy values can be used to compare the relative

stability of crystal structures in a same space group. For

example, the change in stability of an ionic crystal as the

cation is progressively substituted by another cation [28].

It can also be used to predict the solubility of a crystal be-

fore it is actually fabricated. The lattice energy has to be

overcome by the energy of solvation of the ions (and an in-

crease of entropy) in order for the crystal to be dissolved in a

solvent [7, 27].

The most interesting application of the lattice energy is

the strong correlation between the lattice energy density and

the mechanical stiffnesses of the crystals. In this context, the

lattice energy equals to the “cohesive energy” of the crys-

tal as it dissociates into compound ions. For hydroxyapatite,

the relatively large value of its lattice energy density (103

KJ/cm3) is the chemical basis for its high stiffness values in

polycrystalline form (Young’s modulus between ER = 140

GPa and EV = 153 GPa). This large LED is contributed by

the closeness of the packing of chemical groups in the hy-

droxyapatite lattice, as shown in Fig 1. As a result of this,

the spatial density of chemical bonds in the hydroxyapatite

lattice is very large. Compare to a typical binary salt, NaCl

(rock salt). NaCl crystal, which has a cubic structure, has a

lattice energy density of only 28.5 KJ/cm3, and a Young’s

modulus between ER = 36.7 GPa and EV = 37.6 GPa.

The theoretical basis for the relation between the LED

and the elastic stiffnesses may be inferred from the following

equation. At extremely low temperature, the bulk modulus

K of a perfect ionic crystal is equal to [29]

K = V
∂2UP OT

∂V 2
, (11)

where UPOT is the lattice energy as a function of the inter-

ionic distance, r. V is the volume of the crystal lattice cor-

responding to UPOT. V is also a function of r. At equilib-

rium, ∂UPOT/∂r = 0, from which the value of KEquil can be

evaluated.

5.3 Implications in bone mechanics

Compared to stoichiometric hydroxyapatite, bone apatite

is highly imperfect [1]. Typical imperfections include the

substitution of PO4 tetrahedra by smaller CO3 triangles

(B type imperfection), or the substitution of OH by CO3

(A type imperfection) [30]. As a result, the bone min-

eral is a vacancy-containing, hydroxyl-deficient apatite,

Ca8.3�1.7(PO4)4.3(CO3)1(HPO4)0.7(OH)0.3�1.7 [2]. Natu-

rally, the lattice energy of apatite in real bone is expected to

be less than, and upper-bounded by, that of the stoichiometric

hydroxyapatite. How to calculate the lattice energy of an im-

perfect bone apatite as a function of the lattice imperfection is

Springer
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a challenging task. The calculation of the lattice energy for a

perfect, stoichiometric, hydroxyapatite is the first step in that

direction.

The lattice geometry of bone mineral crystal also varies

with gender, evolves with age [31], and alters under patho-

logical conditions such as Osteogenesis Imperfecta (OI). For

example, the length ratio c/a for bone apatite unit cells is

significantly higher for females than for males. For males,

there is a significant change of c/a with age, but this is not

observed for females [31].

Subtle mineral lattice indices, such as the bone mineral

crystallinity [32], the carbonate to phoshate ratio [33], and

the content of poorly crystalline apatite phase [34], vary

with age or the maturation stage of bone. Typical diagnos-

tic tools include the infrared spectroscopic method (such

as Fourier Transform Infrared Spectroscopy, FTIR) and the

nuclear magnetic resonance (NMR) spectroscopy. Osteo-

genesis Imperfecta (OI), a devastating bone disease asso-

ciated with disrupted collagen expression, is also accom-

panied by a measurable decrease in bone mineral size and

crystallinity [35]. It is possible that osteoporosis is not just

caused by a steady decrease in the bone mineral content,

but also by a subtle change in the bone mineral crystal

structure. However, there is very little published data on

the change of the crystal structure of the bone apatite in

osteoporosis.

The lattice energy density could be a useful tool to quan-

titatively characterize changes in the bone mineral lattice

structure in bone pathologies and a way to monitor outcomes

of pharmaceutical intervention.

Nomenclature

a length of hydroxyapatite unit cell in a-axis,

a = 9.4176 Å

A constant in Eq. (6), A = 121.39 KJ·nm/mole

b length of hydroxyapatite unit cell in b-axis, b =
a = 9.4176 Å

c length of hydroxyapatite unit cell in c-axis, c =
6.8814 Å

cαβ simplified 6 × 6 stiffness matrix relating strain

vector εβ to stress vector σα, σα = cαβ εβ

Cijkm 4th – rank elastic stiffness tensor relating strain

tensor Ekm to stress tensor Tij, Tij = Cijkm Ekm

E internal energy in enthalpy relation, � H = � E
+ P � V

ER Reuss effective Young’s modulus (GPa)

EV Voigt effective Young’s modulus (GPa)

Ekm strain tensor, where k, m = 1, 2, 3

GR Reuss effective shear modulus (GPa)

GV Voigt effective shear modulus (GPa)

I ionic strength in Eqs. (4) and (6), I = (
∑

nk z2
k)/2,

where nk is the number of individual ions per

formula unit, zk is the valence of each ion.

I = 48 for hydroxyapatite

kαβ simplified 6 × 6 stiffness matrix relating stress

vector σα to strain vector εβ, εα = kαβ σβ

LED lattice energy density (KJ/cm3)

nk number of an individual ion in a formula unit,

used in Eq. (4)

nLP number of degrees of freedom for linear, poly-

atomic ion, nLP = 5 (3 translational, 2 rotational)

nM number of degrees of freedom for monoatomic

ion, nM = 3 (all translational)

nNP number of degrees of freedom for nonlinear, poly-

atomic ion, nNP = 6 (3 translational, 3 rotational)

P pressure

< r > weighted mean ion radius sum in Eqs. (4) and (5)

(nm)

R universal gas constant, R = 8.3144 J/(mole·K)

Ro repulsion factor in Eq. (4), Ro =1 − 0.0345/<r>
T absolute temperature (K)

Tij stress tensor, where i, j = 1, 2, 3

UPOT lattice energy, also called total lattice potential

energy (KJ/mole)

V volume

Vm volume of hydroxyapatite unit cell, Vm = a2c sin

(60◦) = 528.55 Å
3

zk valence of an ion in a formula unit, used in Eq.(4)

δαγ unit 6 × 6 matrix, δαγ = 0 if α �= γ , and δαγ = 1

if α = γ . Here α, γ = 1, 6

�HL lattice enthalpy of hydroxyapatite, enthalpy of

formation in reaction Eq. (1) (KJ/mole)

�fH(∗) heat of formation of ∗, heat consumed to form 1

mole of substance ∗ from its element in its stand-

ard, thermodynamically most stable state (under

101.32 kPa and 298.15 K)

εβ simplified 6-component strain vector, β = 1, 6

σα simplified 6-component stress vector, α = 1, 6
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